

Safe harbor and forward-looking statements

This presentation contains forward-looking statements within the meaning of The Private Securities Litigation Reform Act of 1995 that involve substantial risks and uncertainties, including statements regarding the development and regulatory status of our product candidates, such as statements with respect to our lead product candidates, ARV-110 and ARV-471, and the timing of clinical trials and data from those trials for our product candidates, and our discovery programs that may lead to our development of additional product candidates, the potential utility of our technology and therapeutic potential of our product candidates, the potential commercialization of any of our product candidates, the potential benefits of our arrangements with Yale University and our collaborative partnerships, the potential benefits of the Bayer joint venture in the agricultural field, and the sufficiency of our cash resources. All statements, other than statements of historical facts, contained in this presentation, including statements regarding our strategy, future operations, future financial position, future revenues, projected costs, prospects, plans and objectives of management, are forward-looking statements. The words "anticipate," "believe," "estimate," "expect," "intend," "may,"
"might," "plan," "predict," "project," "target,"
"potential," "will," "would," "could," "should,"
"continue," and similar expressions are intended to identify forward-looking statements, although not all forward-looking statements contain these identifying words.

We may not actually achieve the plans, intentions or expectations disclosed in our forward-looking statements, and you should not place undue reliance on our forward-looking statements. Actual results or events could differ materially from the plans, intentions and expectations disclosed in the forward-looking statements we make as a result of various risks and uncertainties, including but not limited to: whether we will be able to successfully conduct a Phase 1 clinical trial for ARV-110, successfully initiate and conduct a Phase 1 clinical trial for ARV-471, complete other clinical trials for our product candidates, and receive results from our clinical trials on our expected timelines, or at all, whether our cash resources will be sufficient to fund our foreseeable and unforeseeable operating expenses and capital

expenditure requirements, each party's ability to perform its obligations under our collaborations and/or the Bayer joint venture, our expected timeline and other important factors, any of which could cause our actual results to differ from those contained in the forward-looking statements, discussed in the "Risk Factors" section of the Company's quarterly and annual reports on file with the Securities and Exchange Commission. The forward-looking statements contained in this presentation reflect our current views as of the date of this presentation with respect to future events, and we assume no obligation to update any forward-looking statements except as required by applicable law.

The Arvinas name and logo are our trademarks. We also own the service mark for, and have a pending registered U.S. trademark application for, PROTAC®. The trademarks, trade names and service marks appearing in this presentation are the property of their respective owners. We have omitted the ® and ™ designations, as applicable, for the trademarks named in this presentation.

Mission statement

To create a new class of medicines that

degrade pathogenic proteins

to treat diseases with serious unmet medical need

and improve human health

Oncology; Neurology

Arvinas: Clinical-stage leader in protein degradation, a powerful new modality

Novel PROTAC® (proteolysis-targeting chimera) degrader platform

- Built with foundational technology and foremost experts from Yale University
- Combines the strengths of small molecule inhibitors and gene-based medicines

Full worldwide development and commercialization rights for lead programs

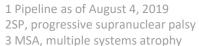
- ARV-110 Metastatic castration-resistant prostate cancer; Phase 1 initiated 1Q19, and received "Fast Track" designation from FDA in May 2019
- ARV-471 Estrogen receptor-positive / HER2-negative locally advanced or metastatic breast cancer; FDA "Safe to Proceed" received 2Q19, and Phase 1 initiation expected 3Q19
- Brain-penetrant PROTAC programs targeting tauopathies and α -synucleinopathies

Strategic, discovery-stage partnerships with Genentech, Pfizer, and Bayer

- Up to \$2.1B in potential milestones plus tiered royalties
- Partnerships across broad set of therapeutic areas and a JV for agricultural applications

Strong cash and IP positions

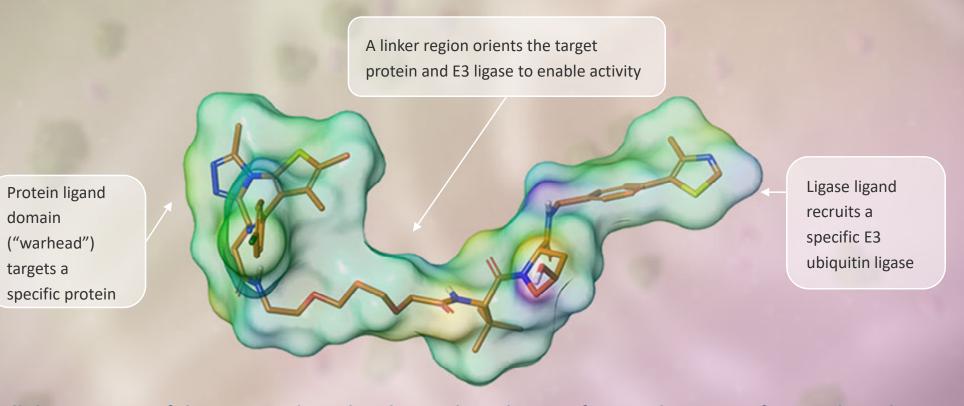
- First targeted protein degradation company to IPO (NASDAQ: ARVN; September 2018)
- ~\$211M in proforma cash, cash equivalents, and marketable securities as of 6/30/19¹
- Broad platform IP, complemented by specific product IP


Team built for success

- Strong leadership team with unparalleled protein degrader development experience
- World-class Board and scientific advisors, including Craig Crews (PROTAC inventor)

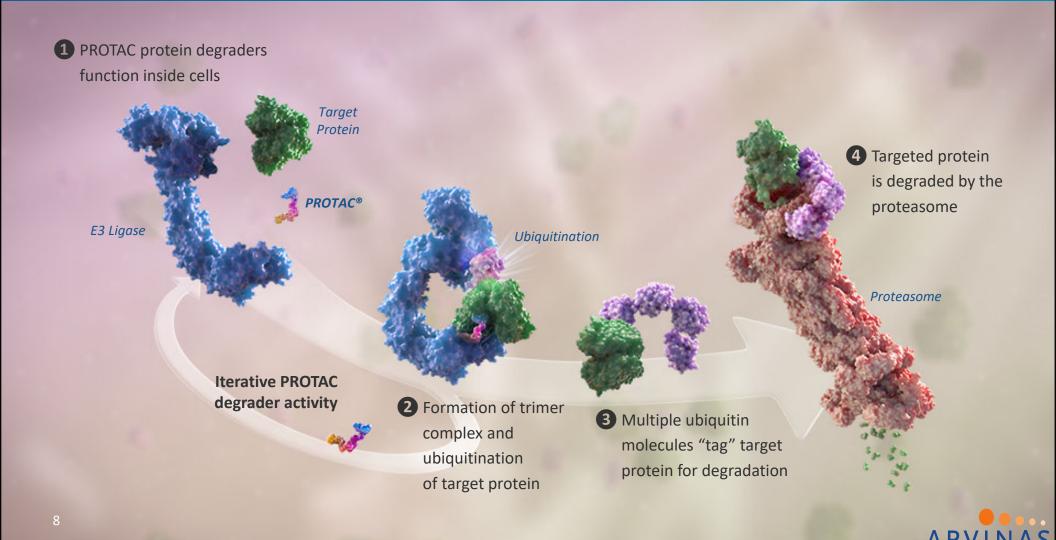
High potential PROTAC® pipeline, focused on cancer and neurology¹

		Programs [Target]	Discovery	Lead Optimization	IND Enabling	Phase 1	Arvinas Owned
	Metastatic Castration-resistant Prostrate Cancer	ARV-110 [Androgen Receptor]					✓
		Next Generation Degrad [Androgen Receptor]	ler				√
Oncology		AR Variant Degrader [AR-V7]					√
	Locally Advanced or Metastatic ER+ / HER2- Breast Cancer	ARV-471 [Estrogen Receptor]					√
	Additional Oncology Indications	e.g., CRC, NSCLC [Undisclosed]					√
	Tauopathies	e.g., PSP ² [Tau]					√
Neurology	Synucleinopathies	e.g., MSA ³ , Parkinson's [α-synuclein]					√
	Additional Neurology Indications	Various [Undisclosed]					√



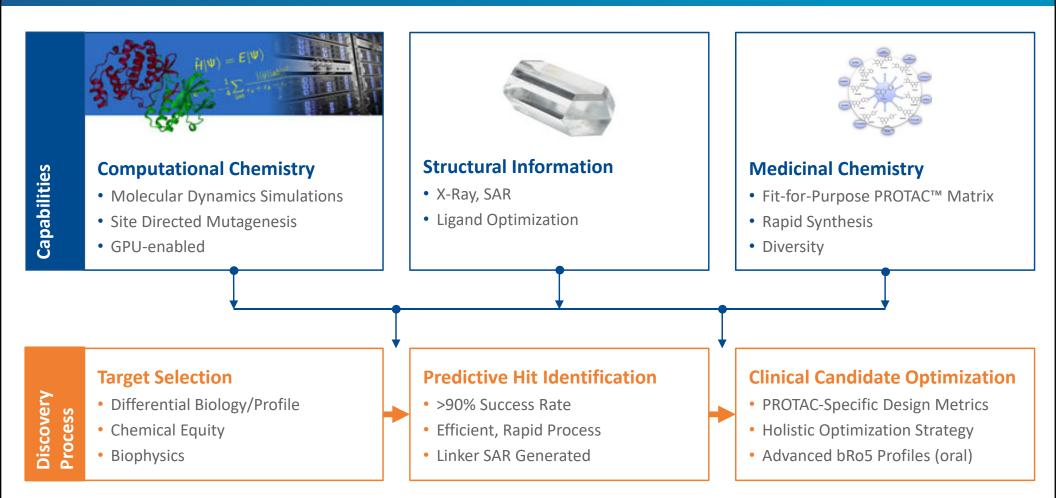
<u>Pro</u>teolysis <u>Ta</u>rgeting <u>C</u>himera

What is a PROTAC® protein degrader?


A <u>proteolysis-targeting chimera</u> (PROTAC) degrader is a chimeric, modular small molecule engineered to induce the degradation of disease-causing proteins by the ubiquitin-proteasome system

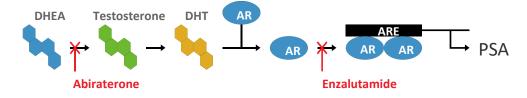
All three regions of the PROTAC degrader play a role in the specificity and potency of target degradation

PROTAC® protein degraders harness the ubiquitin-proteasome system to induce the degradation of disease-causing proteins


PROTAC® protein degraders combine the advantages of gene-based medicines with the benefits of small molecule therapies

PROTAC protein degraders have distinct advantages over both small molecule inhibitors and gene-based medicines	PROTAC Protein Degraders	Small Molecule Inhibitors	Gene-Based Medicines	
Eliminate pathogenic proteins	✓	×	✓	
Target scaffolding function	✓	×	✓	
Potential to treat "undruggable" proteins	✓	×	✓	
Iterative mechanism of action	\checkmark	×	×	
Broad tissue penetration	✓	✓	×	
Orally bioavailable	✓	√	×	
Ease of manufacturing	✓	✓	×	

Arvinas' technology and expertise enable effective hit ID and optimized development candidates


ARV-110 is Arvinas' AR degrader for men with metastatic castration-resistant prostate cancer (mCRPC)¹

Androgen Receptor (AR) Activity Drives Prostate Cancer

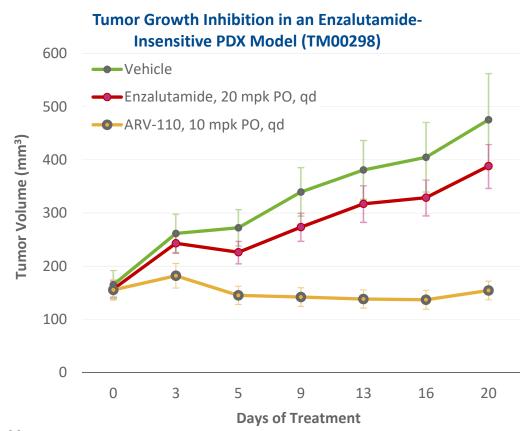
- Current agents work by decreasing androgen levels (abiraterone) or blocking androgen binding to AR (enzalutamide)
- 15-25% of patients never respond to abiraterone or enzalutamide (intrinsic resistance)
- Resistance mechanisms to abiraterone and enzalutamide include:
 - AR gene amplification (40-60% of patients)
 - AR gene enhancer amplification (>70% of patients)
 - AR point mutations (~15% of patients)
 - Intra-tumoral androgen production

PROTAC® Degrader ARV-110

- First-in-class AR degrader being tested in men with metastatic castration-resistant prostate cancer who have progressed on standards of care (enzalutamide, abiraterone)
- In preclinical models, overcomes known resistance mechanisms to enzalutamide and abiraterone
- · Highly selective degradation of AR
- Phase 1 clinical trial initiated 1Q19; preliminary data expected 4Q19
- Received FDA "Fast Track" designation in May 2019

^{1.} According to the American Cancer Society, prostate cancer is the second leading cause of cancer death in men in the U.S. (~174k diagnosed/yr1); 35-45k new incidences of mCRPC in the U.S. each year

ARV-110 inhibits tumor growth in an *in vivo* model of acquired enzalutamide resistance


- In vivo mouse xenograft model of acquired enzalutamide resistance developed at Arvinas
- In this model, VCaP tumors acquired resistance to enzalutamide after being continuously propagated in castrated, enzalutamide treated mice for ~3 years
- Daily and orally delivered ARV-110 significantly inhibited tumor growth (at right)
 - 10 mpk ARV-110: 70% tumor growth inhibition

ARV-110 demonstrates efficacy and plasma PSA reduction in an enzalutamide-insensitive patient derived xenograft model

 Orally delivered ARV-110 significantly inhibited tumor growth in these intrinsically enza-insensitive tumors (TGI: 100%)

 Plasma PSA levels following ARV-110 treatment significantly decreased vs. mice treated with vehicle or enzalutamide

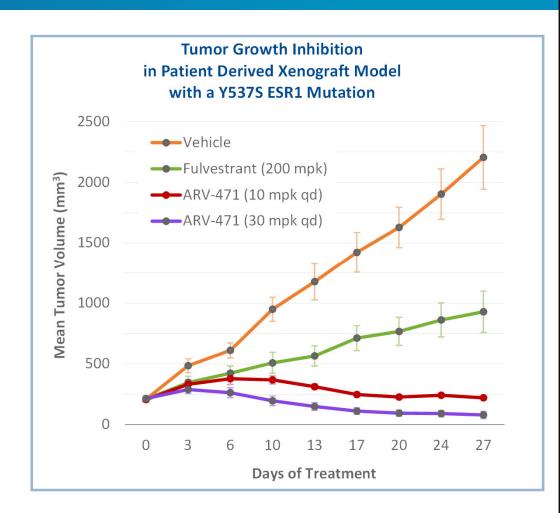
ARV-471 is Arvinas' ER degrader for patients with locally advanced or metastatic breast cancer

Breast cancer is the second most common cancer in women¹

- ~268,000 women are expected to be diagnosed with invasive breast cancer in the US in 2019¹
- Metastatic breast cancer accounts for ~6% of newly diagnosed cases²
- 80% of breast cancers are estrogen receptor (ER) positive³
- Fulvestrant has demonstrated the value of ER degradation in breast cancer
- After 6 months of fulvestrant treatment, up to 50%
 of FR baseline levels remain⁴

PROTAC® Degrader ARV-471

- ARV-471 is in development for the treatment of patients with ER+ locally advanced or metastatic breast cancer
- Investigational New Drug (IND) clearance from FDA in 2Q19
- Ph 1 trial expected to begin 3Q2019
- After Phase 1 dose escalation, a Phase 1b trial in combination with CDK4/6 inhibitor is planned

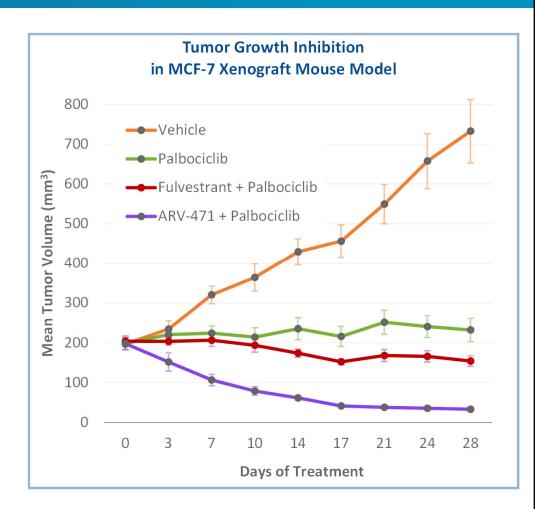


^{1.} American Cancer Society; 2 Malmgren, J.A., Breast Cancer Res Treat (2018) 167:579–590; 3 National Cancer Institute, Hormone Therapy for Breast Cancer; 4 Gutteridge et. Al., Breast Cancer Res Treat 2004;88 suppl 1:S177

ARV-471: superior tumor growth inhibition versus fulvestrant in a Y537S (ER gene mutation) PDX model

ARV-471 *In Vivo* Preclinical Development

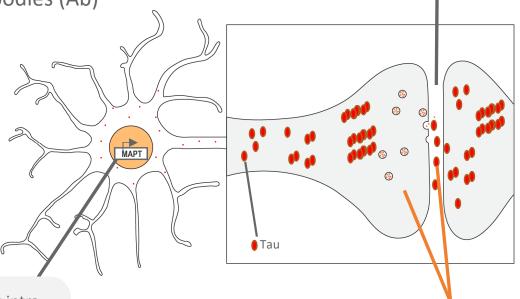
- Oral, daily dose of ARV-471 inhibited tumor growth by 99% at 10 mpk and 106% at 30 mpk in an ESR1 mutant PDX model (at right)
- Superior inhibitor of tumor growth compared to fulvestrant¹
- In corresponding quantitative western blots, ER is reduced by 79% and 88% in the 10 mpk and 30 mpk arms, respectively, vs. 63% for fulvestrant



In combination with palbociclib, ARV-471 exhibits superior tumor shrinkage versus fulvestrant

ARV-471 In Vivo Preclinical Development

- Achieved significant tumor shrinkage in combination with palbociclib (131% TGI) in an MCF-7 xenograft mouse model
- -In all 10 mice in experiment, tumors reduced by >80%
- Superior tumor shrinkage (in combination with palbociclib) compared to fulvestrant (108% TGI)



Mutant-specific PROTAC® degraders may reduce intra- and extracellular tau, creating a strong opportunity in neuroscience

 PROTAC degraders may overcome the limitations of other platforms, including antisense oligonucleotides (ASO) and monoclonal antibodies (Ab)

Blocks only extracellular pathologic tauIV dosing results in only 0.5% in CSF

ASO

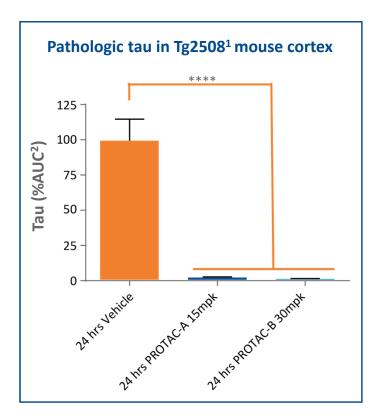
- Degrades mRNA, impacting intraand extracellular tau
- Does not discriminate between wild type and pathologic tau
- Requires intrathecal dosing

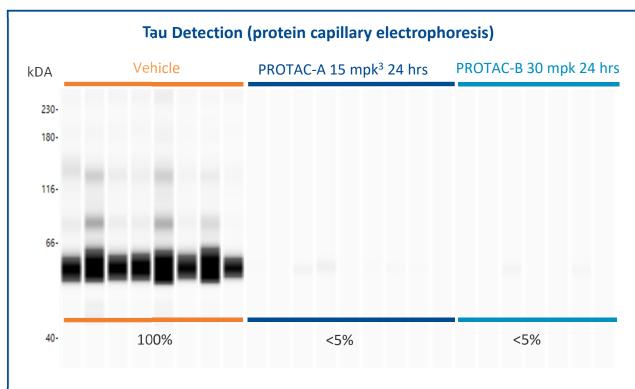
PROTAC Potential

- Reduce intra- and extracellular pathologic tau
- Discriminate between wild type and pathologic tau
- Oral administration with BBB biodistribution

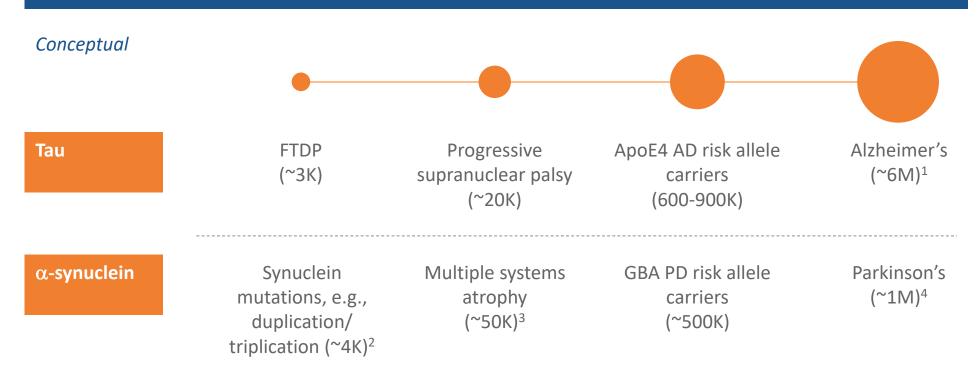
Our PROTAC® degraders can be engineered to cross the blood-brain barrier (BBB)

- Micromolar rodent brain exposure achieved after peripheral (IV) administration
- Brain-to-plasma ratio >0.5 achievable with PROTAC degraders


PROTAC	Species	Dose (mg/kg)	[Plasma 1h] (ng/ml)	[Brain 1h] (ng/g)	B/P ratio
1	mouse	10	309	227	0.8
2	mouse	10	843	3920	4.7
3	mouse	10	285	1425	5.0


Over a 4-hour time course,
 PROTAC degraders are more
 durable in the brain than in plasma

In vivo, tau-directed PROTAC® degraders eliminate >95% of pathologic tau following parenteral administration


24 hours post dose:

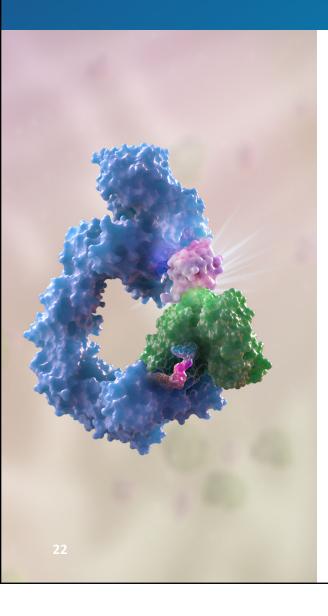
- >95% of pathologic tau is degraded
- No significant change in total soluble tau 24 h post dose (data not shown)

Arvinas' approach in neuroscience

Approach: Prove the concept with PROTAC® degraders in defined populations while pursuing larger, multifactorial indications

FTDP, frontotemporal dementia and parkinsonism; GBA, glucocerebrosidase gene; AD, Alzheimer's disease; PD, Parkinson's disease

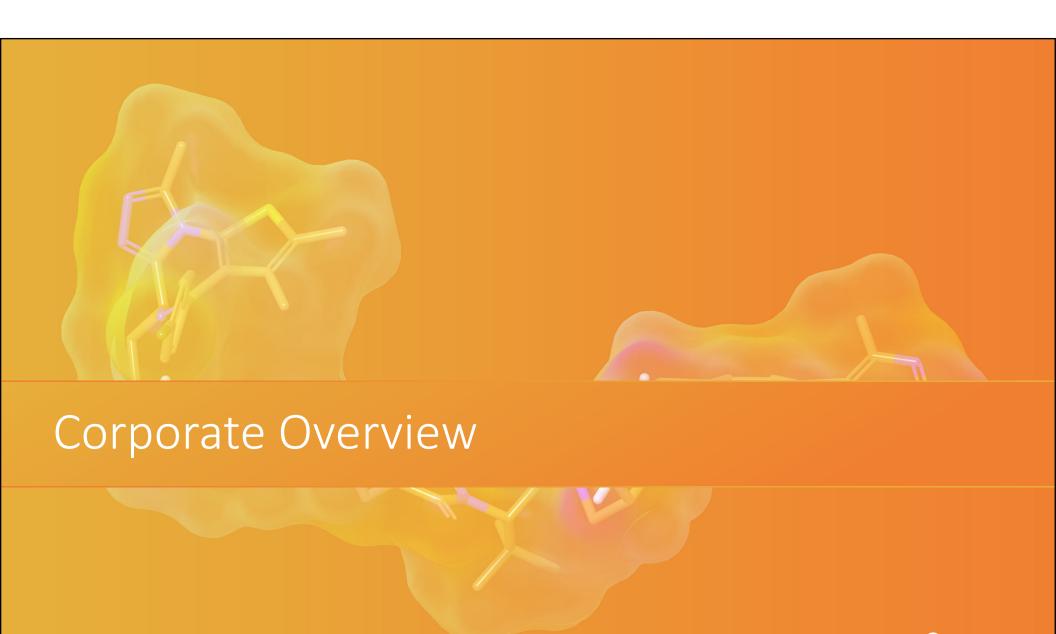
1 Alzheimer's Association; "2018 Alzheimer's Disease Facts and Figures." Alzheimer's and Dementia; V.14; No.3; 2018; p36


2 Kowal. Movement Disorders 2013, 28: 311-319; Nishioka. Intechopen 2011

3 NINDS; https://www.ninds.nih.gov/Disorders/Patient-Caregiver-Education/Fact-Sheets/Multiple-System-Atrophy

4 Parkinson's Foundation: http://parkinson.org/Understanding-Parkinsons/Causes-and-Statistics/Statistics

Future targets and platform expansion


"Undruggable" Targets

- The ~80% of proteins not addressable by small-molecule inhibition may be degradable by PROTAC® protein degraders
- These targets are difficult to drug because they lack active sites or accessible binding pockets
- PROTAC degraders do not require tight target binding in order to be effective; the MOA is event-driven rather than occupancy-driven
- Arvinas has multiple, classically undruggable targets in the pipeline;
 expect to share further data in 2020 and beyond

Platform Expansion

- Identifying and leveraging tissue and disease-specific E3 ligases
- Enhanced prediction of degradation selectivity

Financial snapshot

\$211 Million¹

Proforma cash, cash equivalents, and marketable securities as of 6/30/19

33.5 Million²

Proforma common shares outstanding as of 6/30/19

Guidance

Expect cash, cash equivalents, marketable securities, and Bayer proceeds to fund planned operations into 2H21

Analyst Coverage

Cantor Fitzgerald, Citibank, Evercore ISI, Goldman Sachs, Piper Jaffray³

1 Proforma for the Bayer license and collaboration agreement and private placement proceeds of \$51.5M, which closed on July 16, 2019

2 Proforma for the Bayer private placement of 1.3 M shares of common stock, which closed on July 16, 2019

3 The foregoing list includes the names of all brokerage firms known by the company as of 8/12/19 to have analysts covering the company. This list may not be complete and is subject to change as firms add or delete coverage. Please note that any opinions, estimates or forecasts regarding the company made by these analysts are theirs alone and may not represent the opinions, estimates or forecasts of the company.

Strategic partnerships are validating our PROTAC® protein degrader technology

September 2015

(expanded in November 2017)

- Target discovery deal
- Upfront, development, and commercial milestone aggregate payments in excess of \$650M
- Tiered royalties

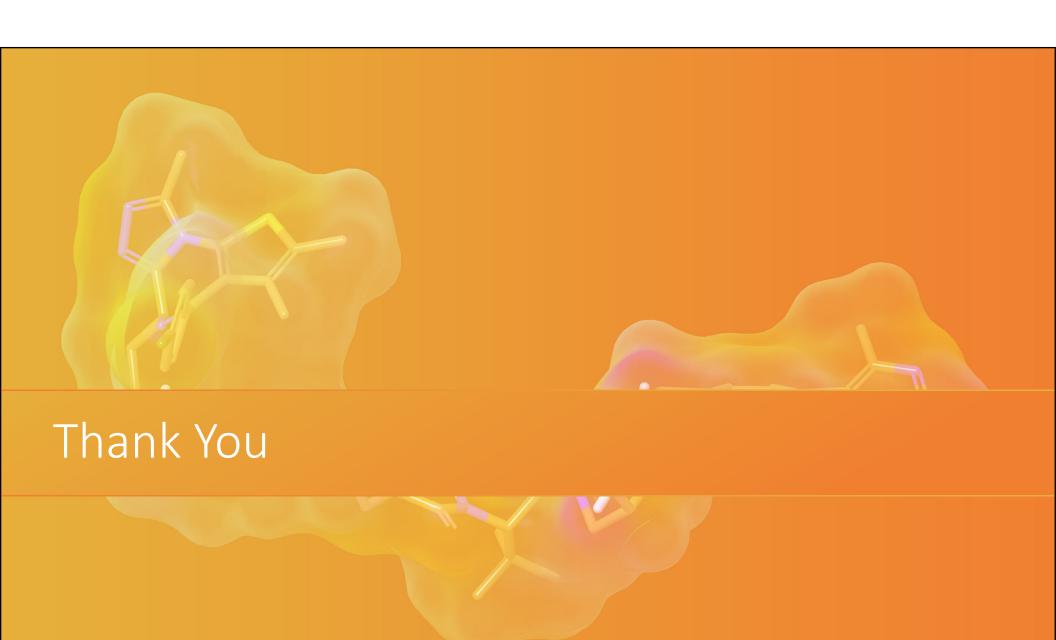
December 2017

- Target discovery deal
- Upfront, development, and commercial milestone aggregate payments up to \$830M
- Tiered royalties

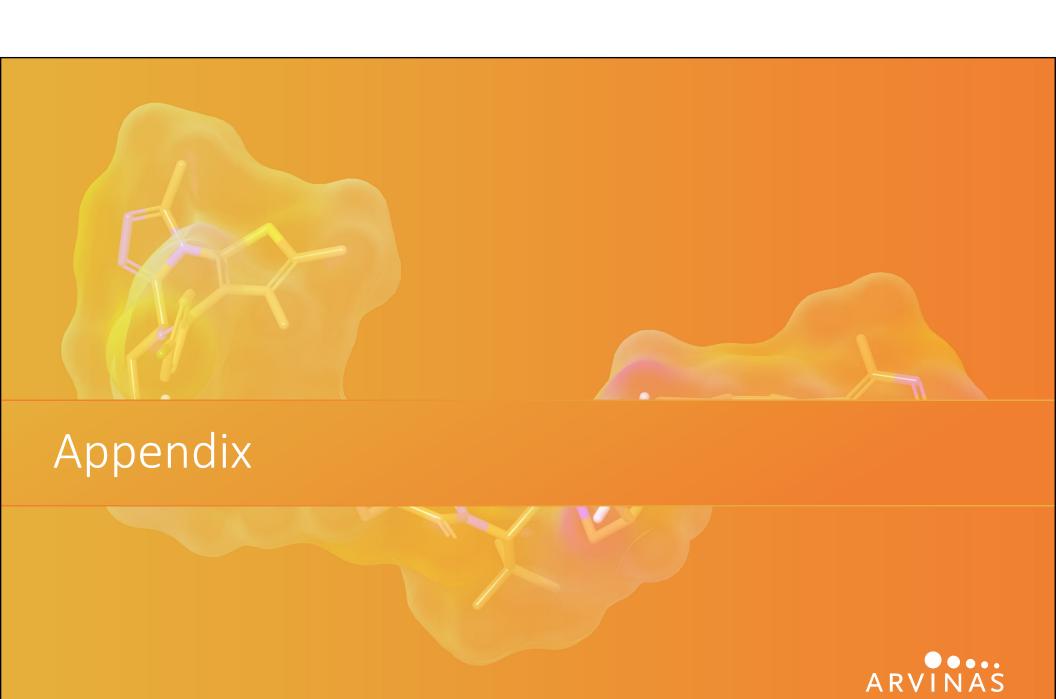
June 2019

- Pharma target discovery deal, including cardiovascular, gynecologic, and oncologic disease
- Agricultural JV (50:50 share)
- Private equity placement
- ~\$115M in total upfront and committed funds

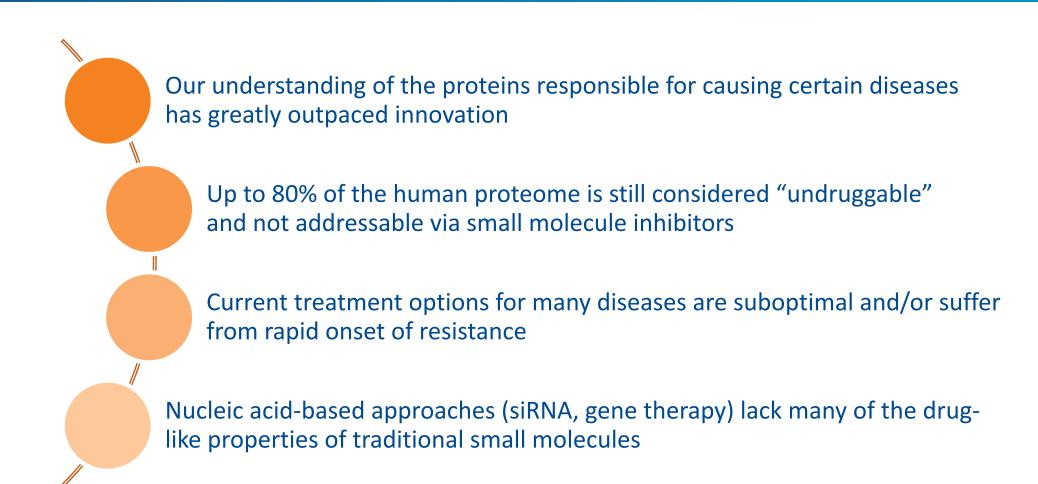
Potential for nearly \$2.1 billion in milestones



The PROTAC® Company: Leading in protein degradation therapeutics



- ARV-110: Believed to be the first PROTAC degrader in the clinic
- Leading platform and product IP, driven by nearly two decades of PROTAC protein degradation research
- First to publish data on orally available PROTAC protein degraders
- Leadership team with experience getting drugs to market
- Strong financial position to advance the platform and product candidates



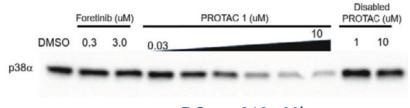
The need for a new approach

Our strategic approach to proving and delivering a novel technology platform

Clinically validate
the PROTAC®
protein degrader
concept with welldefined targets

Prioritize additional targets where degradation has the potential to be superior to existing modalities

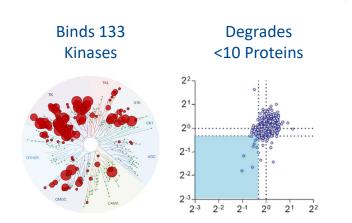
Treat patients with diseases inaccessible to current therapies by degrading "undruggable" targets


- Invest in our pipeline and our platform and grow our IP to expand our leadership in protein degradation
- Selectively collaborate with strong partners to expand the impact of PROTAC protein degraders into new areas

Weak or promiscuous ligands can be converted into potent and selective PROTAC® degraders

When developed into PROTAC degraders, weak binders can become potent degraders

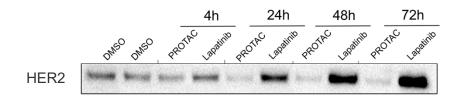
- Foretinib is a relatively weak binder to p38 α
- PROTAC 1 is a foretinib-based PROTAC degrader with a p38 $\!\alpha$ binding affinity of 11 μM
- Despite its 11 μ M binding affinity, PROTAC 1 has a DC₅₀ of 210 nM¹
 - Based on experience, optimization of potency better than 210 nM is likely


A PROTAC degrader based on foretinib has a nanomolar DC_{50} despite a 11 μ M binding affinity

 $DC_{50} = 210 \text{ nM}^{1}$

When developed into PROTAC degraders, promiscuous ligands can become selective degraders

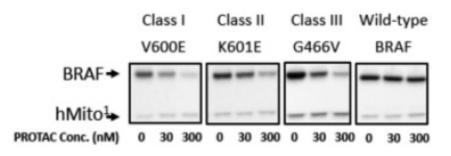
- Foretinib binds to 133 protein kinases (left panel)
- In cells treated with a foretinib-based PROTAC degrader, only a small subset of cellular proteins are degraded (*blue-shaded quadrant of the right panel*)



Potential advantages of PROTAC® protein degraders over inhibitors

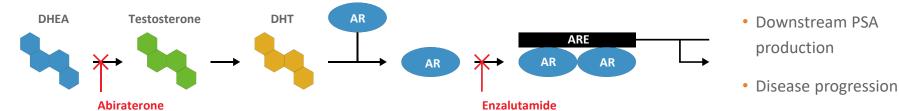
Overcome Target Protein Overexpression

PROTAC degraders can disable this common tumor resistance mechanism


- Lapatinib alone results in HER2-overexpression, but a PROTAC created with lapatinib as the "warhead" degrades natural and overexpressed HER2
- HER2 degraded despite increased RNA levels

Selectively Eliminate Mutated Proteins

PROTAC degraders can differentiate between mutant and wild type proteins


 The three mutants of BRAF shown (V600E, K601E, G466V) differ from the wild type by a single point mutation, but are degraded by a BRAF-targeted PROTAC that spares the wild type

Androgen receptor and metastatic castration resistant prostate cancer (mCRPC)

Prostate cancer is the second leading cause of cancer death in men in the U.S. (~174k diagnosed/yr¹); 35-45k new incidences of mCRPC in the U.S. each year

Androgen Receptor (AR) Activity Drives Prostate Cancer²

- Current agents work by decreasing androgen levels (abiraterone) or blocking androgen binding to AR (enzalutamide)
- 15-25% of patients do not respond to abiraterone or enzalutamide (intrinsic resistance)

Acquired Resistance Mechanisms to Abiraterone and Enzalutamide

- AR gene amplification (40-60% of patients)
- AR gene enhancer amplification (>70% of patients)
- AR point mutations (~15% of patients)
- Intra-tumoral androgen production

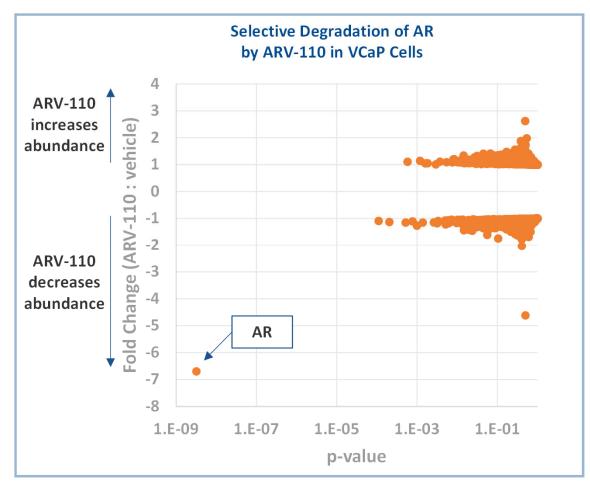
In resistant patients, PSA levels rise, suggesting that AR remains the principal driver of disease

^{1.} American Cancer Society

^{2.} DHEA, dehydroepiandrosterone; DHT, dihydrotestosterone; AR, androgen receptor; ARE, androgen response element

ARV-110 selectively degrades AR

Orally bioavailable androgen receptortargeted PROTAC protein degrader


- ARV-110 is in development for the treatment of men with mCRPC who have progressed on abiraterone and/or enzalutamide
- Appears to overcome mechanisms of resistance to current standards of care
- $DC_{50} = 1 \text{ nM}$ in VCaP cells¹

ARV-110 Selectively Degrades AR

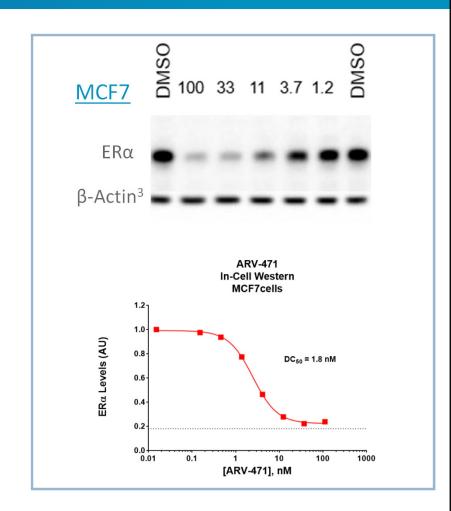
 After 8 hours of treatment of VCaP cells with 10 nM ARV-110 in vitro, AR was the only degraded protein among the nearly 4,000 proteins measured

 $-85\% D_{max}^{2}$

p-value: 3x10⁻⁹

1 VCaP, Vertebral Cancer of the Prostate

2 D_{max}, maximal degradation

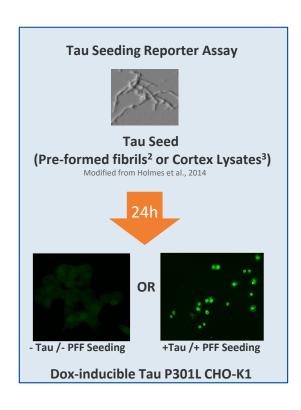

Our estrogen receptor-targeting PROTAC® degrader: ARV-471

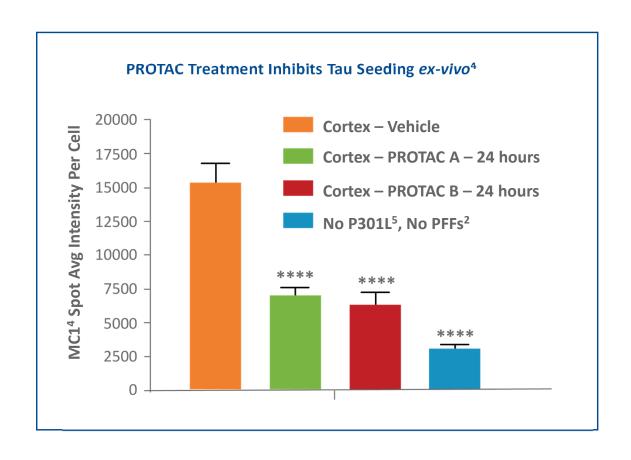
Orally bioavailable estrogen receptor-targeted PROTAC protein degrader

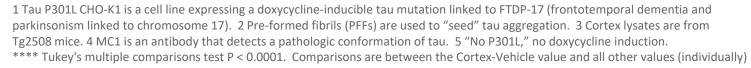
- ARV-471 is in development for the treatment of patients with ER+ locally advanced or metastatic breast cancer
- Potential as both a single agent and in combination with CDK4/6 inhibitors

ARV-471 Degrades ER in ER+ Breast Cancer Cell Lines

- ARV-471 induces ER degradation in multiple ER+ breast cancer cell lines, including MCF-7 cells and ESR1-mutant lines¹
- $DC_{50} = 1.8 \text{ nM} \text{ in MCF7 cells}^2$




 $2 DC_{50} = Half-maximal degradation concentration$


3 Beta-actin is a protein ARV-471 and fulvestrant are not targeted to degrade, and is included as a loading control

Tau-directed PROTAC® protein degraders inhibit ex-vivo tau seeding

Arvinas / Bayer collaboration

In June 2019, Bayer and Arvinas announced a \$110+ million partnership to develop human PROTAC® therapies and launch a separate joint venture (JV) to develop PROTAC® degraders for agricultural applications

Pharmaceutical collaboration and direct equity investment

- Focus on gynecology, oncology, and cardiovascular disease targets
- Upfront and committed funding exceeds \$60 million (including equity investment)
- Over \$685 million in potential milestone payments, plus commercial royalties

Agriculture-focused joint venture

- JV to develop agricultural products using PROTAC® degrader technology
- Potential for weed, pest, and disease control applications
- Over \$55 million in committed funding by Bayer to JV
- Bayer and Arvinas share ownership and governance of the JV equally

Seasoned leadership with expertise in advancing novel technologies

Leadership Team

John G. Houston, PhD President & CEO

Sean Cassidy, CPA, MBA Chief Financial Officer

Ronald Peck, MD Chief Medical Officer

Ian Taylor, PhD Chief Scientific Officer

Angela Cacace, PhD VP Neuro and Platform Biology

John A. Grosso, PhD VP Chemistry, Mfg. & Controls

Matthew Batters, JD VP Bus. Development & Counsel

Randy Teel, PhD **VP** Corporate Development

Kimberly Wehger VP Information Technology

Steve Weiss VP Human Resources

Board of Directors

Timothy Shannon, M.D. Chairman

John G. Houston, Ph.D.

Ted Kennedy, Jr., J.D.

Jakob Loven. Ph.D.

Brad Margus

Briggs Morrison, M.D.

Leslie Norwalk, Esq.

Kush M. Parmar, M.D., Ph.D.

For more information

www.arvinas.com

Press/Media

pr@arvinas.com

Investors

ir@arvinas.com

Business Development

bd@arvinas.com

Careers

careers@arvinas.com

